Isotropic

Methods

  • Minami et al. 2019: describes a method to simutaneously determine birefringence and detector miscalibration using galactic foreground emission, assuming the galactic foreground has zero EB correlation.
  • Sherwin and Namikawa 2021: miscalibration free measurements of isotropic birefringence using reionization bump.
  • Namikawa 2021: use CMB mode coupling to constrain isotropic birefringence.
  • Lee, Hotinli, and Kamionkowski 2022: use polarized SZ effect to probe cosmic birefringence.
  • Diego-Palazuelos, Mart\’ınez-González, et al. 2022: validate method of (Minami et al. 2019) with realistic simulations of Planck HFI. Conclude that the method is robust to miscalibration error but suffer from foreground EB.
  • Jost, Errard, and Stompor 2022: proposes a generalized parametric foreground separation approach based on CMB polarization that accounts for cosmic birefringence. Claims that 0.35\(^{\circ}\) detection can be ruled out at 5\(\sigma\) by near future CMB experiment using this approach, assuming an in-lab calibration priors.

Measurements

Anistropic

Measurements

Systematics

  • Planck on dust polarization: Planck 353GHz data shows a EE/BB ratio of about 2, with a positive TE and a weaker, parity violating, TB have been detected, while dust EB remains compatible with 0.
  • Clark et al. 2021: investigate origin of EB correlation in Galactic foreground, suggesting its a result of misalignment between filamentary structure and magnetic field.
  • Cukierman, Clark, and Halal 2022: provides observational evidence for misalignment between filaments and magnetic field by comparing Planck polarized dust emission and HI measurement from HI4PI. They find a \(\sim 2^{\circ}\) global misalignment which is roughly scale independent.
  • Vacher et al. 2022: extending Clark et al. 2021 and Cukierman, Clark, and Halal 2022. Developed an analytic framework and worked out the frequency dependence of dust spectrum such as EE, BB, and EB.
  • Monelli et al. 2022: study non-idealities of half-wave plate as a source of cosmic birefringence systematics.

Physics

Tools

  • Cai and Guan 2021: modified class to calculate rotated power spectrum using non-perturbative calculation. It supports both isotropic and anisotropic birefringences.

References

Bianchini, F., W. L. K. Wu, P. A. R. Ade, A. J. Anderson, J. E. Austermann, J. S. Avva, L. Balkenhol, et al. 2020. “Searching for anisotropic cosmic birefringence with polarization data from SPTpol” 102 (8): 083504. https://doi.org/10.1103/PhysRevD.102.083504.
Cai, Hongbo, and Yilun Guan. 2021. “Computing Microwave Background Polarization Power Spectra from Cosmic Birefringence.” Arxiv E-Prints, November, arXiv:2111.14199.
Clark, S. E., Chang-Goo Kim, J. Colin Hill, and Brandon S. Hensley. 2021. “The Origin of Parity Violation in Polarized Dust Emission and Implications for Cosmic Birefringence” 919 (1): 53. https://doi.org/10.3847/1538-4357/ac0e35.
Cukierman, Ari J., S. E. Clark, and George Halal. 2022. “Magnetic Misalignment of Interstellar Dust Filaments.” Arxiv E-Prints, August, arXiv:2208.07382.
Diego-Palazuelos, P., J. R. Eskilt, Y. Minami, M. Tristram, R. M. Sullivan, A. J. Banday, R. B. Barreiro, H. K. Eriksen, et al. 2022. “Cosmic Birefringence from Planck Data Release 4.” Arxiv E-Prints, January, arXiv:2201.07682.
Diego-Palazuelos, P., E. Mart\’ınez-González, P. Vielva, R. B. Barreiro, M. Tristram, E. de la Hoz, J. R. Eskilt, Y. Minami, et al. 2022. “Robustness of cosmic birefringence measurement against Galactic foreground emission and instrumental systematics.” Arxiv E-Prints, October, arXiv:2210.07655.
Eskilt, Johannes R., and Eiichiro Komatsu. 2022. “Improved constraints on cosmic birefringence from the WMAP and Planck cosmic microwave background polarization data” 106 (6): 063503. https://doi.org/10.1103/PhysRevD.106.063503.
Ferguson, K. R., A. J. Anderson, N. Whitehorn, P. A. R. Ade, M. Archipley, J. S. Avva, L. Balkenhol, et al. 2022. “Searching for axionlike time-dependent cosmic birefringence with data from SPT-3G” 106 (4): 042011. https://doi.org/10.1103/PhysRevD.106.042011.
Greco, Alessandro, Nicola Bartolo, and Alessandro Gruppuso. 2022. “Probing Axions through Tomography of Anisotropic Cosmic Birefringence.” arXiv. https://arxiv.org/abs/2211.06380.
Jain, Mudit, Ray Hagimoto, Andrew J. Long, and Mustafa A. Amin. 2022. “Searching for axion-like particles through CMB birefringence from string-wall networks” 2022 (10): 090. https://doi.org/10.1088/1475-7516/2022/10/090.
Jost, Baptiste, Josquin Errard, and Radek Stompor. 2022. “Characterising cosmic birefringence in the presence of galactic foregrounds and instrumental systematic effects.” Arxiv E-Prints, December, arXiv:2212.08007. https://doi.org/10.48550/arXiv.2212.08007.
Kitajima, Naoya, Fumiaki Kozai, Fuminobu Takahashi, and Wen Yin. 2022. “Power spectrum of domain-wall network, and its implications for isotropic and anisotropic cosmic birefringence” 2022 (10): 043. https://doi.org/10.1088/1475-7516/2022/10/043.
Lee, Nanoom, Selim C. Hotinli, and Marc Kamionkowski. 2022. “Probing cosmic birefringence with polarized Sunyaev-Zel’dovich tomography” 106 (8): 083518. https://doi.org/10.1103/PhysRevD.106.083518.
Minami, Yuto, Hiroki Ochi, Kiyotomo Ichiki, Nobuhiko Katayama, Eiichiro Komatsu, and Tomotake Matsumura. 2019. “Simultaneous determination of the cosmic birefringence and miscalibrated polarization angles from CMB experiments.” Progress of Theoretical and Experimental Physics 2019 (8): 083E02. https://doi.org/10.1093/ptep/ptz079.
Minami, Yuto, and Eiichiro Komatsu. 2020. “New Extraction of the Cosmic Birefringence from the Planck 2018 Polarization Data.” $\Backslash$prl 125 (22): 221301. https://doi.org/10.1103/PhysRevLett.125.221301.
Monelli, Marta, Eiichiro Komatsu, Alexandre E. Adler, Matteo Billi, Paolo Campeti, Nadia Dachlythra, Adriaan J. Duivenvoorden, Jon E. Gudmundsson, and Martin Reinecke. 2022. “Impact of half-wave plate systematics on the measurement of cosmic birefringence from CMB polarization.” Arxiv E-Prints, November, arXiv:2211.05685. https://doi.org/10.48550/arXiv.2211.05685.
Nakatsuka, Hiromasa, Toshiya Namikawa, and Eiichiro Komatsu. 2022. “Is cosmic birefringence due to dark energy or dark matter? A tomographic approach.” Arxiv E-Prints, March, arXiv:2203.08560.
Namikawa, Toshiya. 2021. “CMB Mode Coupling with Isotropic Polarization Rotation.” Monthly Notices of the Royal Astronomical Society 506 (1): 1250–57. https://doi.org/10.1093/mnras/stab1796.
Namikawa, Toshiya, Yilun Guan, Omar Darwish, Blake D. Sherwin, and others. 2020. “The Atacama Cosmology Telescope: Constraints on cosmic birefringence.” Physical Review D 101 (8): 1–18. https://doi.org/10.1103/physrevd.101.083527.
Sherwin, Blake D., and Toshiya Namikawa. 2021. “Cosmic Birefringence Tomography and Calibration-Independence with Reionization Signals in the CMB” 7 (August): 1–7. https://arxiv.org/abs/2108.09287.
Vacher, Léo, Jonathan Aumont, François Boulanger, Ludovic Montier, Vincent Guillet, Alessia Ritacco, and Jens Chluba. 2022. “Frequency dependence of the thermal dust $E/B$ ratio and $EB$ correlation: insights from the spin-moment expansion.” Arxiv E-Prints, October, arXiv:2210.14768. https://doi.org/10.48550/arXiv.2210.14768.